Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 127

Answer

$\dfrac{\pi }{2} - \dfrac{{{\pi ^3}}}{{{2^3}\cdot 3!}} + \dfrac{{{\pi ^5}}}{{{2^5}\cdot 5!}} - \dfrac{{{\pi ^7}}}{{{2^7}\cdot 7!}} + \cdot\cdot\cdot = 1$

Work Step by Step

From Table 2 of Section 11.7, we know that $\sin x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n + 1} \right)!}} = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$. Substituting $\dfrac{x}{2}$ for $x$ in the series above gives $\sin \dfrac{x}{2} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{{2^{2n + 1}}\left( {2n + 1} \right)!}}$ Setting $x = \pi $, we obtain $\sin \dfrac{\pi }{2} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{\pi ^{2n + 1}}}}{{{2^{2n + 1}}\left( {2n + 1} \right)!}} = \dfrac{\pi }{2} - \dfrac{{{\pi ^3}}}{{{2^3}\cdot3!}} + \dfrac{{{\pi ^5}}}{{{2^5}\cdot5!}} - \dfrac{{{\pi ^7}}}{{{2^7}\cdot7!}} + \cdot\cdot\cdot$ Since $\sin \dfrac{\pi }{2} = 1$, so $\dfrac{\pi }{2} - \dfrac{{{\pi ^3}}}{{{2^3}\cdot 3!}} + \dfrac{{{\pi ^5}}}{{{2^5}\cdot 5!}} - \dfrac{{{\pi ^7}}}{{{2^7}\cdot 7!}} + \cdot\cdot\cdot = 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.