Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 121

Answer

$f\left( x \right) = \ln \dfrac{x}{2} = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{{\left( {x - 2} \right)}^n}}}{{{2^n}n}}$

Work Step by Step

Write $\ln \dfrac{x}{2} = \ln \left( {1 + \dfrac{1}{2}\left( {x - 2} \right)} \right)$. From Table 2 of Section 11.7, we know that $\ln \left( {1 + x} \right) = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{x^n}}}{n} = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for $\left| x \right| \lt 1$ and $x=1$. Substituting $\dfrac{1}{2}\left( {x - 2} \right)$ for $x$ in the series above gives $\ln \left( {1 + \dfrac{1}{2}\left( {x - 2} \right)} \right) = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{{\left( {\dfrac{1}{2}\left( {x - 2} \right)} \right)}^n}}}{n} = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{{\left( {x - 2} \right)}^n}}}{{{2^n}n}}$ Thus, the Taylor series centered at $c=2$ is $f\left( x \right) = \ln \dfrac{x}{2} = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{{\left( {x - 2} \right)}^n}}}{{{2^n}n}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.