Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 123

Answer

${f^{\left( 3 \right)}}\left( 0 \right) = - 6$

Work Step by Step

From Table 2 of Section 11.7, we have ${{\rm{e}}^x} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^n}}}{{n!}} = 1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$. Substituting ${x^2}$ for $x$ in the series above we get ${{\rm{e}}^{{x^2}}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^{2n}}}}{{n!}}$, ${\ \ \ }$ converges for all $x$ Thus, $f\left( x \right) = \left( {{x^2} - x} \right){{\rm{e}}^{{x^2}}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{\left( {{x^2} - x} \right){x^{2n}}}}{{n!}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^{2n + 2}} - {x^{2n + 1}}}}{{n!}}$ Write out the first three terms: $f\left( x \right) = \left( {{x^2} - x} \right){{\rm{e}}^{{x^2}}} = \left( {{x^2} - x} \right) + \left( {{x^4} - {x^3}} \right) + \dfrac{1}{2}\left( {{x^6} - {x^5}} \right) + \cdot\cdot\cdot$ $f\left( x \right) = \left( {{x^2} - x} \right){{\rm{e}}^{{x^2}}} = - x + {x^2} - {x^3} + {x^4} - \dfrac{1}{2}{x^5} + \dfrac{1}{2}{x^6} + \cdot\cdot\cdot$ Notice that the coefficient of ${x^3}$ is $-1$. According to the Maclaurin series: $f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n}$. Comparing with the expansion above, we get $\dfrac{{{f^{\left( 3 \right)}}\left( 0 \right)}}{{3!}} = - 1$ So, ${f^{\left( 3 \right)}}\left( 0 \right) = - 6$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.