Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 125

Answer

${f^{\left( 3 \right)}}\left( 0 \right) = - 8$

Work Step by Step

We compute the derivatives of $f\left( x \right) = \dfrac{1}{{1 + \tan x}}$ and list them in the table below: $\begin{array}{*{20}{c}} n&{\frac{{{f^{\left( n \right)}}\left( x \right)}}{{n!}}}&{}&{}&{}&{}&{}&{}&{}&{\frac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}}\\ 0&{\frac{1}{{1 + \tan \left( x \right)}}}&{}&{}&{}&{}&{}&{}&{}&1\\ 1&{ - \frac{1}{{{{\left( {\sin \left( x \right) + \cos \left( x \right)} \right)}^2}}}}&{}&{}&{}&{}&{}&{}&{}&{ - 1}\\ 2&{\frac{{\cos \left( x \right) - \sin \left( x \right)}}{{{{\left( {\sin \left( x \right) + \cos \left( x \right)} \right)}^3}}}}&{}&{}&{}&{}&{}&{}&{}&1\\ 3&{\frac{{2\left( {\sin \left( {2x} \right) - 2} \right)}}{{3{{\left( {\sin \left( x \right) + \cos \left( x \right)} \right)}^4}}}}&{}&{}&{}&{}&{}&{}&{}&{ - \frac{4}{3}}\\ 4&{ - \frac{{11\sin \left( x \right) + \sin \left( {3x} \right) - 11\cos \left( x \right) + \cos \left( {3x} \right)}}{{6{{\left( {\sin \left( x \right) + \cos \left( x \right)} \right)}^5}}}}&{}&{}&{}&{}&{}&{}&{}&{\frac{5}{3}}\\ 5&{\frac{{26\sin \left( {2x} \right) + \cos \left( {4x} \right) - 33}}{{15{{\left( {\sin \left( x \right) + \cos \left( x \right)} \right)}^6}}}}&{}&{}&{}&{}&{}&{}&{}&{ - \frac{{32}}{{15}}} \end{array}$ According to the Maclaurin series: $f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n}$. From the table above, we get the coefficient of ${x^3}$, which is $ - \dfrac{4}{3}$. So, $\dfrac{{{f^{\left( 3 \right)}}\left( 0 \right)}}{{3!}} = - \dfrac{4}{3}$. Therefore, ${f^{\left( 3 \right)}}\left( 0 \right) = - 8$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.