Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 110

Answer

$y = {{\rm{e}}^x} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^n}}}{{n!}}$

Work Step by Step

Let $y = P\left( x \right) = \mathop \sum \limits_{n = 0}^\infty {a_n}{x^n}$. $y = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + \cdot\cdot\cdot$ With $P\left( 0 \right) = 1$, we get ${a_0} = 1$. The derivatives are $y' = \mathop \sum \limits_{n = 1}^\infty n{a_n}{x^{n - 1}} = {a_1} + 2{a_2}x + 3{a_3}{x^2} + \cdot\cdot\cdot$ $y{\rm{''}} = \mathop \sum \limits_{n = 2}^\infty n\left( {n - 1} \right){a_n}{x^{n - 2}} = 2{a_2} + 3\cdot2{a_3}x + \cdot\cdot\cdot$ Shifting the indices, we obtain $y' = \mathop \sum \limits_{n = 0}^\infty \left( {n + 1} \right){a_{n + 1}}{x^n} = {a_1} + 2{a_2}x + 3{a_3}{x^2} + \cdot\cdot\cdot$ $y{\rm{''}} = \mathop \sum \limits_{n = 0}^\infty \left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}}{x^n} = 2{a_2} + 3\cdot2{a_3}x + \cdot\cdot\cdot$ Substituting $y'$ and $y{\rm{''}}$ in the Laguerre differential equation: $xy{\rm{''}} + \left( {1 - x} \right)y' - y = 0$ gives $x\mathop \sum \limits_{n = 0}^\infty \left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}}{x^n} + \left( {1 - x} \right)\mathop \sum \limits_{n = 0}^\infty \left( {n + 1} \right){a_{n + 1}}{x^n} - \mathop \sum \limits_{n = 0}^\infty {a_n}{x^n} = 0$ $\mathop \sum \limits_{n = 0}^\infty \left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}}{x^{n + 1}} + \mathop \sum \limits_{n = 0}^\infty \left( {n + 1} \right){a_{n + 1}}{x^n} - \mathop \sum \limits_{n = 0}^\infty \left( {n + 1} \right){a_{n + 1}}{x^{n + 1}} - \mathop \sum \limits_{n = 0}^\infty {a_n}{x^n} = 0$ $\mathop \sum \limits_{n = 0}^\infty \left[ {\left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}} - \left( {n + 1} \right){a_{n + 1}}} \right]{x^{n + 1}} + \mathop \sum \limits_{n = 0}^\infty \left[ {\left( {n + 1} \right){a_{n + 1}} - {a_n}} \right]{x^n} = 0$ Shifting the index gives $\mathop \sum \limits_{n = 1}^\infty \left[ {\left( {n + 1} \right)\left( n \right){a_{n + 1}} - n{a_n}} \right]{x^n} + \mathop \sum \limits_{n = 0}^\infty \left[ {\left( {n + 1} \right){a_{n + 1}} - {a_n}} \right]{x^n} = 0$ The differential equation is satisfied if $\mathop \sum \limits_{n = 1}^\infty \left[ {n\left( {n + 1} \right){a_{n + 1}} - n{a_n}} \right]{x^n} = - \mathop \sum \limits_{n = 0}^\infty \left[ {\left( {n + 1} \right){a_{n + 1}} - {a_n}} \right]{x^n}$ We write out the first few terms on each side of this equation: $\left( {2{a_2} - {a_1}} \right)x + \left( {6{a_3} - 2{a_2}} \right){x^2} + \left( {12{a_4} - 3{a_3}} \right){x^3} + \left( {20{a_5} - 4{a_4}} \right){x^4} + \left( {30{a_6} - 5{a_5}} \right){x^5}$ $ = - \left( {{a_1} - {a_0}} \right) - \left( {2{a_2} - {a_1}} \right)x - \left( {3{a_3} - {a_2}} \right){x^2} - \left( {4{a_4} - {a_3}} \right){x^3} - \left( {5{a_5} - {a_4}} \right){x^4} - \left( {6{a_6} - {a_5}} \right){x^5}$ Matching up the coefficients of ${x^n}$, we obtain ${a_1} - {a_0} = 0$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ ${a_1} = {a_0}$ $2{a_2} - {a_1} = - 2{a_2} + {a_1}$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ $4{a_2} = 2{a_1}$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ ${a_2} = \dfrac{1}{2}{a_1}$ $6{a_3} - 2{a_2} = - 3{a_3} + {a_2}$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ $9{a_3} = 3{a_2}$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ ${a_3} = \dfrac{1}{3}{a_2}$ $12{a_4} - 3{a_3} = - 4{a_4} + {a_3}$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ $16{a_4} = 4{a_3}$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ ${a_4} = \dfrac{1}{4}{a_3}$ $20{a_5} - 4{a_4} = - 5{a_5} + {a_4}$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ $25{a_5} = 5{a_4}$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ ${a_5} = \dfrac{1}{5}{a_4}$ $30{a_6} - 5{a_5} = - 6{a_6} + {a_5}$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ $36{a_6} = 6{a_5}$ ${\ \ \ }$ $ \Rightarrow $ ${\ \ \ }$ ${a_6} = \dfrac{1}{6}{a_5}$ Since ${a_0} = 1$, so we obtain $\begin{array}{*{20}{c}} n&{}&{{a_n}}\\ 1&{}&1\\ 2&{}&{\dfrac{1}{2}}\\ 3&{}&{\dfrac{1}{3}\cdot\dfrac{1}{2}}\\ 4&{}&{\dfrac{1}{4}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}}\\ 5&{}&{\dfrac{1}{5}\cdot\dfrac{1}{4}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}}\\ 6&{}&{\dfrac{1}{6}\cdot\dfrac{1}{5}\cdot\dfrac{1}{4}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}} \end{array}$ In general: ${a_n} = \dfrac{1}{{n!}}$. Substituting ${a_n} = \dfrac{1}{{n!}}$ in $y = P\left( x \right) = \mathop \sum \limits_{n = 0}^\infty {a_n}{x^n}$ gives $y = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^n}}}{{n!}}$ From Table 2 of Section 11.7, we know that ${{\rm{e}}^x} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^n}}}{{n!}}$ Therefore, the solution is $y = {{\rm{e}}^x} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^n}}}{{n!}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.