Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 117

Answer

$\sin x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^{n + 1}}}}{{\left( {2n + 1} \right)!}}{\left( {x - \pi } \right)^{2n + 1}}$

Work Step by Step

We compute the derivatives of $f\left( x \right) = \sin x$ and list them in the table below: $\begin{array}{l} \begin{array}{*{20}{c}} n&{{f^{\left( n \right)}}\left( x \right)}&{\dfrac{{{f^{\left( n \right)}}\left( x \right)}}{{n!}}}&{\dfrac{{{f^{\left( n \right)}}\left( \pi \right)}}{{n!}}}\\ 0&{\sin \left( x \right)}&{\sin \left( x \right)}&0\\ 1&{\cos \left( x \right)}&{\cos \left( x \right)}&{ - 1}\\ 2&{ - \sin \left( x \right)}&{ - \dfrac{{\sin \left( x \right)}}{2}}&0\\ 3&{ - \cos \left( x \right)}&{ - \dfrac{{\cos \left( x \right)}}{6}}&{\dfrac{1}{6}} \end{array}\\ \begin{array}{*{20}{c}} 4&{\sin \left( x \right)}&{\dfrac{{\sin \left( x \right)}}{{24}}}&0\\ 5&{\cos \left( x \right)}&{\dfrac{{\cos \left( x \right)}}{{120}}}&{ - \dfrac{1}{{120}}}\\ 6&{ - \sin \left( x \right)}&{ - \dfrac{{\sin \left( x \right)}}{{720}}}&0\\ 7&{ - \cos \left( x \right)}&{ - \dfrac{{\cos \left( x \right)}}{{5040}}}&{\dfrac{1}{{5040}}} \end{array} \end{array}$ By Theorem 1 of Section 11.7, the Taylor series centered at $c = \pi $ is given by $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( \pi \right)}}{{n!}}{\left( {x - \pi } \right)^n}$ Using the table above, we get $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( \pi \right)}}{{n!}}{\left( {x - \pi } \right)^n} = - \left( {x - \pi } \right) + \dfrac{1}{6}{\left( {x - \pi } \right)^3} - \dfrac{1}{{120}}{\left( {x - \pi } \right)^5} + \dfrac{1}{{5040}}{\left( {x - \pi } \right)^7} - \cdot\cdot\cdot$ Thus, the Taylor series of $f\left( x \right) = \sin x$ centered at $c = \pi $ is $\sin x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^{n + 1}}}}{{\left( {2n + 1} \right)!}}{\left( {x - \pi } \right)^{2n + 1}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.