Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 102

Answer

The interval of convergence is $[ - 1,1)$.

Work Step by Step

Let ${a_n} = \dfrac{{{x^n}}}{{n + 1}}$. We compute $\rho $ from the Ratio Test: $\rho = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{x^{n + 1}}}}{{n + 2}}\cdot\dfrac{{n + 1}}{{{x^n}}}} \right| = \left| x \right|\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{n + 1}}{{n + 2}}} \right|$ $ = \left| x \right|\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{1 + \dfrac{1}{n}}}{{1 + \dfrac{2}{n}}}} \right| = \left| x \right|$ The series converges if $\rho = \left| x \right| \lt 1$. That is, $ - 1 \lt x \lt 1$ Next, we check the endpoints: $x=-1$ and $x=1$. 1. $x=-1$: ${\ \ \ \ \ }$ $\mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^n}}}{{n + 1}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}}}{{n + 1}}$ Since the sequence $\left\{ {\dfrac{1}{{n + 1}}} \right\}$ is positive, decreasing and converge to $0$, by the Alternating Series Test, this series converges. 2. $x=1$: ${\ \ \ \ \ }$ $\mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^n}}}{{n + 1}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{1}{{n + 1}}$ We apply the Integral test: $\mathop \smallint \limits_0^\infty \frac{1}{{x + 1}}{\rm{d}}x = \left[ {\ln \left( {x + 1} \right)} \right]_0^\infty = \infty $ Since $\mathop \smallint \limits_0^\infty \frac{1}{{x + 1}}{\rm{d}}x$ diverges, by the Integral Test, $\mathop \sum \limits_{n = 0}^\infty \frac{1}{{n + 1}}$ also diverges. Thus, the interval of convergence is $[ - 1,1)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.