Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 126

Answer

${f^{\left( 3 \right)}}\left( 0 \right) = - \dfrac{7}{4}$

Work Step by Step

From Table 2 of Section 11.7, we get $\sin x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n + 1} \right)!}} = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$. And also ${\left( {1 + x} \right)^a} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){x^n} = 1 + ax + \dfrac{{a\left( {a - 1} \right)}}{{2!}}{x^2} + \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)}}{{3!}}{x^3} + \cdot\cdot\cdot$, converges for $\left| x \right| \lt 1$. Setting $a = \dfrac{1}{2}$, we get $\sqrt {1 + x} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} {\dfrac{1}{2}}\\ n \end{array}} \right){x^n} = 1 + \dfrac{x}{2} + \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right)}}{{2!}}{x^2} + \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)}}{{3!}}{x^3} + \cdot\cdot\cdot$ Thus, $f\left( x \right) = \left( {\sin x} \right)\sqrt {1 + x} $ $ = \left( {x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \cdot\cdot\cdot} \right)\left( {1 + \dfrac{x}{2} + \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right)}}{{2!}}{x^2} + \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)}}{{3!}}{x^3} + \cdot\cdot\cdot} \right)$ Since we are to find ${f^{\left( 3 \right)}}\left( 0 \right)$, we need only the coefficient of ${x^3}$. Inspecting the multiplication of series above, we get the terms in ${x^3}$: $f\left( x \right) = \cdot\cdot\cdot + \left( { - \dfrac{{{x^3}}}{{3!}} + \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right)}}{{2!}}{x^2}} \right) + \cdot\cdot\cdot$ $f\left( x \right) = \cdot\cdot\cdot + \left( { - \dfrac{1}{6} - \dfrac{1}{8}} \right){x^3} + \cdot\cdot\cdot$ $f\left( x \right) = \cdot\cdot\cdot + \left( { - \dfrac{7}{{24}}} \right){x^3} + \cdot\cdot\cdot$ According to the Maclaurin series: $f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n}$. So, $\dfrac{{{f^{\left( 3 \right)}}\left( 0 \right)}}{{3!}} = - \dfrac{7}{{24}}$. Therefore, ${f^{\left( 3 \right)}}\left( 0 \right) = - \dfrac{7}{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.