Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 107

Answer

$\dfrac{2}{{4 - 3x}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{3^n}}}{{{2^{2n + 1}}}}{x^n}$, ${\ \ \ }$ converges for $\left| x \right| \lt \dfrac{4}{3}$

Work Step by Step

Write $\dfrac{2}{{4 - 3x}} = \dfrac{2}{{4\left( {1 - \left( {\dfrac{3}{4}x} \right)} \right)}}$. We substitute $\dfrac{3}{4}x$ for $x$ in Eq. (2) of Section 11.6: $\dfrac{2}{{4 - 3x}} = \dfrac{2}{{4\left( {1 - \left( {\dfrac{3}{4}x} \right)} \right)}} = \dfrac{1}{2}\left( {\dfrac{1}{{1 - \left( {\dfrac{3}{4}x} \right))}}} \right) = \dfrac{1}{2}\mathop \sum \limits_{n = 0}^\infty {\left( {\dfrac{3}{4}x} \right)^n}$ $\dfrac{2}{{4 - 3x}} = \dfrac{1}{2}\mathop \sum \limits_{n = 0}^\infty \dfrac{{{3^n}}}{{{2^{2n}}}}{x^n} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{3^n}}}{{{2^{2n + 1}}}}{x^n}$ The expansion above is valid for $\left| {\dfrac{3}{4}x} \right| \lt 1$ or $\left| x \right| \lt \dfrac{4}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.