Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 109

Answer

(a) We show that $F\left( x \right)$ has infinite radius of convergence. (b) We show that $y = F\left( x \right)$ is a solution of the differential equation: $y{\rm{''}} = xy{\rm{''}} + y$, ${\ \ \ \ \ }$ $y\left( 0 \right) = 1$, ${\ \ }$ $y'\left( 0 \right) = 0$ (c) See graph

Work Step by Step

(a) Let ${a_k} = \dfrac{{{x^{2k}}}}{{{2^k}\cdot k!}}$. We compute $\rho $ from the Ratio Test: $\rho = \mathop {\lim }\limits_{k \to \infty } \left| {\dfrac{{{a_{k + 1}}}}{{{a_k}}}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\dfrac{{{x^{2k + 2}}}}{{{2^{k + 1}}\cdot\left( {k + 1} \right)!}}\dfrac{{{2^k}\cdot k!}}{{{x^{2k}}}}} \right| = \left| {\dfrac{{{x^2}}}{2}} \right|\mathop {\lim }\limits_{k \to \infty } \dfrac{1}{{k + 1}} = 0$ Since $\rho = 0 \lt 1$ for all $x$, by the Ratio Test, the series $F\left( x \right) = \mathop \sum \limits_{k = 0}^\infty \dfrac{{{x^{2k}}}}{{{2^k}\cdot k!}}$ converges for all $x$. It means that $F\left( x \right)$ has infinite radius of convergence. (b) Write $y = F\left( x \right) = \mathop \sum \limits_{k = 0}^\infty \dfrac{{{x^{2k}}}}{{{2^k}\cdot k!}} = 1 + \dfrac{{{x^2}}}{{2\cdot 1!}} + \dfrac{{{x^4}}}{{4\cdot 2!}} + \dfrac{{{x^6}}}{{8\cdot 3!}} + \cdot\cdot\cdot$, where $y\left( 0 \right) = 1$. Compute the derivatives with respect to $x$: $y' = \mathop \sum \limits_{k = 1}^\infty \left( {2k} \right)\dfrac{{{x^{2k - 1}}}}{{{2^k}\cdot k!}} = \mathop \sum \limits_{k = 1}^\infty \dfrac{{{x^{2k - 1}}}}{{{2^{k - 1}}\cdot\left( {k - 1} \right)!}} = x + \dfrac{{{x^3}}}{2} + \dfrac{{{x^5}}}{8} + \cdot\cdot\cdot$, where $y'\left( 0 \right) = 0$. $y{\rm{''}} = \mathop \sum \limits_{k = 1}^\infty \left( {2k - 1} \right)\dfrac{{{x^{2k - 2}}}}{{{2^{k - 1}}\cdot\left( {k - 1} \right)!}} = 1 + \dfrac{3}{2}{x^2} + \dfrac{5}{8}{x^4} + \cdot\cdot\cdot$ By shifting the index, $y{\rm{''}}$ can be written as $y{\rm{''}} = \mathop \sum \limits_{k = 0}^\infty \left( {2k + 1} \right)\dfrac{{{x^{2k}}}}{{{2^k}\cdot k!}}$ $y{\rm{''}} = \mathop \sum \limits_{k = 0}^\infty \left( {2k} \right)\dfrac{{{x^{2k}}}}{{{2^k}\cdot k!}} + \mathop \sum \limits_{k = 0}^\infty \dfrac{{{x^{2k}}}}{{{2^k}\cdot k!}}$ Notice that the first term ($k=0$) of the first sum on the right-hand side is zero, so we can write $y{\rm{''}} = \mathop \sum \limits_{k = 1}^\infty \dfrac{{{x^{2k}}}}{{{2^{k - 1}}\cdot\left( {k - 1} \right)!}} + \mathop \sum \limits_{k = 0}^\infty \dfrac{{{x^{2k}}}}{{{2^k}\cdot k!}}$ $y{\rm{''}} = x\mathop \sum \limits_{k = 1}^\infty \dfrac{{{x^{2k - 1}}}}{{{2^{k - 1}}\cdot\left( {k - 1} \right)!}} + \mathop \sum \limits_{k = 0}^\infty \dfrac{{{x^{2k}}}}{{{2^k}\cdot k!}}$ Since $y = \mathop \sum \limits_{k = 0}^\infty \dfrac{{{x^{2k}}}}{{{2^k}\cdot k!}}$ and $y' = \mathop \sum \limits_{k = 1}^\infty \dfrac{{{x^{2k - 1}}}}{{{2^{k - 1}}\cdot\left( {k - 1} \right)!}}$, so $y{\rm{''}} = xy{\rm{''}} + y$ (c) Write ${S_N} = \mathop \sum \limits_{k = 0}^N \dfrac{{{x^{2k}}}}{{{2^k}\cdot k!}}$. Using a computer algebra system, we plot the partial sums ${S_N}$ for $N = 1,3,5,7$ on the same set of axes (please see the figure attached).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.