Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 118

Answer

$f\left( x \right) = {{\rm{e}}^{x - 1}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( {x + 1} \right)}^n}}}{{{{\rm{e}}^2}n!}}$

Work Step by Step

Write ${{\rm{e}}^{x - 1}} = {{\rm{e}}^{\left( {x + 1} \right) - 2}} = \dfrac{1}{{{{\rm{e}}^2}}}{{\rm{e}}^{\left( {x + 1} \right)}}$. We have from Table 2 of Section 11.7: ${{\rm{e}}^x} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^n}}}{{n!}} = 1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$. Substituting $\left( {x + 1} \right)$ for $x$ in ${{\rm{e}}^x}$, we get ${{\rm{e}}^{\left( {x + 1} \right)}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( {x + 1} \right)}^n}}}{{n!}}$, ${\ \ \ }$ converges for all $x$. Thus, the Taylor series centered at $c=-1$ is $f\left( x \right) = {{\rm{e}}^{x - 1}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( {x + 1} \right)}^n}}}{{{{\rm{e}}^2}n!}}$. It is valid for all $x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.