Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 116

Answer

${x^3} - x = - 6 + 11\left( {x + 2} \right) - 6{\left( {x + 2} \right)^2} + {\left( {x + 2} \right)^3}$

Work Step by Step

We compute the derivatives of $f\left( x \right) = {x^3} - x$ and list them in the table below: $\begin{array}{*{20}{c}} n&{{f^{\left( n \right)}}\left( x \right)}&{\dfrac{{{f^{\left( n \right)}}\left( x \right)}}{{n!}}}&{\dfrac{{{f^{\left( n \right)}}\left( { - 2} \right)}}{{n!}}}\\ 0&{{x^3} - x}&{{x^3} - x}&{ - 6}\\ 1&{3{x^2} - 1}&{3{x^2} - 1}&{11}\\ 2&{6x}&{3x}&{ - 6}\\ 3&6&1&1\\ 4&0&0&0 \end{array}$ By Theorem 1 of Section 11.7, the Taylor series centered at $c=-2$ is given by $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( { - 2} \right)}}{{n!}}{\left( {x + 2} \right)^n}$ Using the table above, we get $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( { - 2} \right)}}{{n!}}{\left( {x + 2} \right)^n} = - 6 + 11\left( {x + 2} \right) - 6{\left( {x + 2} \right)^2} + {\left( {x + 2} \right)^3}$ So, the Taylor series of $f\left( x \right) = {x^3} - x$ centered at $c=-2$ is ${x^3} - x = - 6 + 11\left( {x + 2} \right) - 6{\left( {x + 2} \right)^2} + {\left( {x + 2} \right)^3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.