Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 115

Answer

${x^4} = 16 + 32\left( {x - 2} \right) + 24{\left( {x - 2} \right)^2} + 8{\left( {x - 2} \right)^3} + {\left( {x - 2} \right)^4}$

Work Step by Step

We compute the derivatives of $f\left( x \right) = {x^4}$ and list them in the table below: $\begin{array}{*{20}{c}} n&{{f^{\left( n \right)}}\left( x \right)}&{\dfrac{{{f^{\left( n \right)}}\left( x \right)}}{{n!}}}&{\dfrac{{{f^{\left( n \right)}}\left( 2 \right)}}{{n!}}}\\ 0&{{x^4}}&{{x^4}}&{16}\\ 1&{4{x^3}}&{4{x^3}}&{32}\\ 2&{12{x^2}}&{6{x^2}}&{24}\\ 3&{24x}&{4x}&8\\ 4&{24}&1&1\\ 5&0&0&0 \end{array}$ By Theorem 1 of Section 11.7, the Taylor series centered at $c=2$ is given by $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( 2 \right)}}{{n!}}{\left( {x - 2} \right)^n}$ Using the table above, we get $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( 2 \right)}}{{n!}}{\left( {x - 2} \right)^n} = 16 + 32\left( {x - 2} \right) + 24{\left( {x - 2} \right)^2} + 8{\left( {x - 2} \right)^3} + {\left( {x - 2} \right)^4}$ Thus, the Taylor series of $f\left( x \right) = {x^4}$ centered at $c=2$ is ${x^4} = 16 + 32\left( {x - 2} \right) + 24{\left( {x - 2} \right)^2} + 8{\left( {x - 2} \right)^3} + {\left( {x - 2} \right)^4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.