Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 108

Answer

We prove: $\mathop \sum \limits_{n = 0}^\infty n{{\rm{e}}^{ - nx}} = \dfrac{{{{\rm{e}}^{ - x}}}}{{{{\left( {1 - {{\rm{e}}^{ - x}}} \right)}^2}}}$

Work Step by Step

We notice that $\dfrac{d}{{dx}}\left( { - \dfrac{1}{{1 - {{\rm{e}}^{ - x}}}}} \right) = \dfrac{{{{\rm{e}}^{ - x}}}}{{{{\left( {1 - {{\rm{e}}^{ - x}}} \right)}^2}}}$. Consider the expansion of the function $\dfrac{1}{{1 - {{\rm{e}}^{ - x}}}}$. Taking the derivative of this expansion, we shall obtain the series representing $\dfrac{{{{\rm{e}}^{ - x}}}}{{{{\left( {1 - {{\rm{e}}^{ - x}}} \right)}^2}}}$. Substitute ${{\rm{e}}^{ - x}}$ for $x$ in Eq. (2) of Section 11.6 gives $\dfrac{1}{{1 - {{\rm{e}}^{ - x}}}} = \mathop \sum \limits_{n = 0}^\infty {\left( {{{\rm{e}}^{ - x}}} \right)^n} = \mathop \sum \limits_{n = 0}^\infty {{\rm{e}}^{ - nx}}$, ${\ \ \ }$ converges for $\left| {{{\rm{e}}^{ - x}}} \right| \lt 1$ Taking the derivative on the series with respect to $x$ gives $\dfrac{d}{{dx}}\left( {\dfrac{1}{{1 - {{\rm{e}}^{ - x}}}}} \right) = - \mathop \sum \limits_{n = 0}^\infty n{{\rm{e}}^{ - nx}}$ Hence, $\dfrac{d}{{dx}}\left( { - \dfrac{1}{{1 - {{\rm{e}}^{ - x}}}}} \right) = \mathop \sum \limits_{n = 0}^\infty n{{\rm{e}}^{ - nx}}$ Since $\dfrac{d}{{dx}}\left( { - \dfrac{1}{{1 - {{\rm{e}}^{ - x}}}}} \right) = \dfrac{{{{\rm{e}}^{ - x}}}}{{{{\left( {1 - {{\rm{e}}^{ - x}}} \right)}^2}}}$, therefore $\mathop \sum \limits_{n = 0}^\infty n{{\rm{e}}^{ - nx}} = \dfrac{{{{\rm{e}}^{ - x}}}}{{{{\left( {1 - {{\rm{e}}^{ - x}}} \right)}^2}}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.