Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 101

Answer

The series converges for all $x$. Thus, the interval of convergence is $\left( { - \infty ,\infty } \right)$.

Work Step by Step

Let ${a_n} = \dfrac{{{2^n}{x^n}}}{{n!}}$. We compute $\rho $ from the Ratio Test: $\rho = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{2^{n + 1}}}}{{\left( {n + 1} \right)!}}{x^{n + 1}}\cdot\dfrac{{n!}}{{{2^n}{x^n}}}} \right| = 2\left| x \right|\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{1}{{n + 1}}} \right| = 0$ Since $\rho = 0 \lt 1$, the series converges for all $x$. Thus, the interval of convergence is $\left( { - \infty ,\infty } \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.