Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 111

Answer

$\mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}{{\rm{e}}^x}}}{{\cos x - 1}} = - 2$

Work Step by Step

From Table 2 of Section 11.7, we have ${{\rm{e}}^x} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{x^n}}}{{n!}} = 1 + x + \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{6} + \dfrac{{{x^4}}}{{24}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ $\cos x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n}}}}{{\left( {2n} \right)!}} = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ Thus, we get ${x^2}{{\rm{e}}^x} = {x^2} + {x^3} + \dfrac{{{x^4}}}{2} + \dfrac{{{x^5}}}{6} + \dfrac{{{x^6}}}{{24}} + \cdot\cdot\cdot$ $\cos x - 1 = - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \cdot\cdot\cdot$ Hence, the limit becomes $\mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}{{\rm{e}}^x}}}{{\cos x - 1}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + {x^3} + \dfrac{{{x^4}}}{2} + \dfrac{{{x^5}}}{6} + \dfrac{{{x^6}}}{{24}} + \cdot\cdot\cdot}}{{ - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \cdot\cdot\cdot}}$ $ = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + x + \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{6} + \dfrac{{{x^4}}}{{24}} + \cdot\cdot\cdot}}{{ - \dfrac{1}{{2!}} + \dfrac{{{x^2}}}{{4!}} - \dfrac{{{x^4}}}{{6!}} + \cdot\cdot\cdot}} = - 2$ So, $\mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}{{\rm{e}}^x}}}{{\cos x - 1}} = - 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.