Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 105

Answer

The interval of convergence is $x=0$.

Work Step by Step

Let ${a_n} = {n^n}{x^n}$. We compute $\rho $ from the Ratio Test: $\rho = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{{\left( {n + 1} \right)}^{n + 1}}{x^{n + 1}}}}{{{n^n}{x^n}}}} \right| = \left| x \right|\mathop {\lim }\limits_{n \to \infty } \left| {\left( {n + 1} \right){{\left( {\dfrac{{n + 1}}{n}} \right)}^n}} \right|$ $ = \left| x \right|\mathop {\lim }\limits_{n \to \infty } \left| {\left( {n + 1} \right){{\left( {1 + \dfrac{1}{n}} \right)}^n}} \right| = \infty $ We have $\rho = \infty $ for all $x$. However, at $x=0$ the series becomes $0$, so converges. Hence, $\mathop \sum \limits_{n = 0}^\infty {n^n}{x^n}$ diverges for all $x \ne 0$. Hence, the interval of convergence is $x=0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.