Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 103

Answer

The interval of convergence is $\left[ {2,4} \right]$.

Work Step by Step

Let ${a_n} = \dfrac{{{n^6}}}{{{n^8} + 1}}{\left( {x - 3} \right)^n}$. We compute $\rho $ from the Ratio Test: $\rho = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{{\left( {n + 1} \right)}^6}}}{{{{\left( {n + 1} \right)}^8} + 1}}\dfrac{{{{\left( {x - 3} \right)}^{n + 1}}}}{{{{\left( {x - 3} \right)}^n}}}\dfrac{{{n^8} + 1}}{{{n^6}}}} \right|$ $ = \left| {x - 3} \right|\mathop {\lim }\limits_{n \to \infty } \left| {{{\left( {\dfrac{{n + 1}}{n}} \right)}^6}\dfrac{{\left( {{n^8} + 1} \right)}}{{\left( {{{\left( {n + 1} \right)}^8} + 1} \right)}}} \right|$ $ = \left| {x - 3} \right|\mathop {\lim }\limits_{n \to \infty } \left| {{{\left( {1 + \dfrac{1}{n}} \right)}^6}\dfrac{{\left( {1 + \dfrac{1}{{{n^8}}}} \right)}}{{\left( {{{\left( {1 + \dfrac{1}{n}} \right)}^8} + \dfrac{1}{{{n^8}}}} \right)}}} \right|$ $ = \left| {x - 3} \right|$ The series converges if $\rho = \left| {x - 3} \right| \lt 1$. That is, $ - 1 \lt x - 3 \lt 1$ or $2 \lt x \lt 4$. Next, we check the endpoints: $x=2$ and $x=4$. 1. $x=2$: ${\ \ \ \ \ }$ $\mathop \sum \limits_{n = 0}^\infty \dfrac{{{n^6}}}{{{n^8} + 1}}{\left( {x - 3} \right)^n} = \mathop \sum \limits_{n = 0}^\infty {\left( { - 1} \right)^n}\dfrac{{{n^6}}}{{{n^8} + 1}}$ Since the sequence $\left\{ {\dfrac{{{n^6}}}{{{n^8} + 1}}} \right\}$ is positive, decreasing and converge to $0$, by the Alternating Series Test, this series converges. 2. $x=4$: ${\ \ \ \ \ }$ $\mathop \sum \limits_{n = 0}^\infty \dfrac{{{n^6}}}{{{n^8} + 1}}{\left( {4 - 3} \right)^n} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{n^6}}}{{{n^8} + 1}}$ We have the inequality: $\dfrac{{{n^6}}}{{{n^8} + 1}} \lt \dfrac{{{n^6}}}{{{n^8}}}$. Or $\dfrac{{{n^6}}}{{{n^8} + 1}} \lt \dfrac{1}{{{n^2}}}$. The larger series $\mathop \sum \limits_{n = 1}^\infty \dfrac{1}{{{n^2}}}$ converges (because $p = 2 \gt 1$ by the Convergence of $p$-Series). Therefore, by the Direct Comparison Test, the smaller series $\mathop \sum \limits_{n = 1}^\infty \dfrac{{{n^6}}}{{{n^8} + 1}}$ also converges. Thus, the interval of convergence is $\left[ {2,4} \right]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.