Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.4 Exercises - Page 352: 54

Answer

$$F'\left( x \right) = 2{e^{2x}}\ln \left( {{e^{2x}} + 1} \right)$$

Work Step by Step

$$\eqalign{ & F\left( x \right) = \int_0^{{e^{2x}}} {\ln \left( {t + 1} \right)} dt \cr & {\text{Differentiate both sides with respect to }}x \cr & F'\left( x \right) = \frac{d}{{dx}}\left[ {\int_0^{{e^{2x}}} {\ln \left( {t + 1} \right)} dt} \right] \cr & {\text{Use the second fundamental theorem of calculus }} \cr & {\text{and the chain rule }}\left( {{\text{see page 284}}} \right) \cr & F'\left( x \right) = \ln \left( {{e^{2x}} + 1} \right)\frac{d}{{dx}}\left[ {{e^{2x}}} \right] \cr & F'\left( x \right) = \ln \left( {{e^{2x}} + 1} \right)\left( {2{e^{2x}}} \right) \cr & {\text{Simplifying}} \cr & F'\left( x \right) = 2{e^{2x}}\ln \left( {{e^{2x}} + 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.