Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 9

Answer

$$ - \frac{1}{4}$$

Work Step by Step

$$\eqalign{ & \int_{ - \infty }^0 {\frac{{dx}}{{{{\left( {2x - 1} \right)}^3}}}} \cr & \cr & {\text{using the definition 7}}{\text{.8}}{\text{.1 of improper integrals}} \cr & \,\,\,\int_{ - \infty }^b {f\left( x \right)} dx = \mathop {\lim }\limits_{a \to - \infty } \int_a^b {f\left( x \right)} dx \cr & \cr & {\text{then}} \cr & \,\int_{ - \infty }^0 {\frac{{dx}}{{{{\left( {2x - 1} \right)}^3}}}} = \mathop {\lim }\limits_{a \to - \infty } \int_a^0 {\frac{{dx}}{{{{\left( {2x - 1} \right)}^3}}}} \cr & = \frac{1}{2}\mathop {\lim }\limits_{a \to - \infty } \int_a^0 {\frac{{2dx}}{{{{\left( {2x - 1} \right)}^3}}}} \cr & = \frac{1}{2}\mathop {\lim }\limits_{a \to - \infty } \int_a^0 {{{\left( {2x - 1} \right)}^{ - 3}}\left( 2 \right)dx} \cr & \cr & {\text{integrate by tables using the formula }}\int {{u^n}du = \frac{{{u^{n + 1}}}}{{n + 1}}} + C \cr & = \frac{1}{2}\mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{{{{\left( {2x - 1} \right)}^{ - 2}}}}{{ - 2}}} \right]_a^0 \cr & = - \frac{1}{4}\mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{1}{{{{\left( {2x - 1} \right)}^2}}}} \right]_a^0 \cr & = - \frac{1}{4}\mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{1}{{{{\left( {2\left( 0 \right) - 1} \right)}^2}}} - \frac{1}{{{{\left( {2a - 1} \right)}^2}}}} \right] \cr & = - \frac{1}{4}\mathop {\lim }\limits_{b \to + \infty } \left[ {1 - \frac{1}{{{{\left( {2a - 1} \right)}^2}}}} \right] \cr & \cr & {\text{calculate the limit when }}a \to - \infty \cr & = - \frac{1}{4}\left[ {1 - \frac{1}{{{{\left( {2\left( { - \infty } \right) - 1} \right)}^2}}}} \right] \cr & = - \frac{1}{4}\left( {1 - \frac{1}{\infty }} \right) \cr & = - \frac{1}{4} \cr & {\text{then}}{\text{,}} \cr & {\text{The integral converges to }}\, - \frac{1}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.