Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 4

Answer

$$\infty \,\,\,\left( {{\text{diverges}}} \right)$$

Work Step by Step

$$\eqalign{ & \int_{ - 1}^{ + \infty } {\frac{x}{{1 + {x^2}}}} dx \cr & {\text{using the definition 7}}{\text{.8}}{\text{.1 of improper integrals}} \cr & \,\,\,\int_a^{ + \infty } {f\left( x \right)} dx = \mathop {\lim }\limits_{b \to + \infty } \int_a^b {f\left( x \right)} dx \cr & \cr & {\text{then}} \cr & \,\,\,\int_{ - 1}^{ + \infty } {\frac{x}{{1 + {x^2}}}} dx = \mathop {\lim }\limits_{b \to + \infty } \int_{ - 1}^b {\frac{x}{{1 + {x^2}}}} dx \cr & {\text{integrating}} \cr & = \mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{1}{2}\ln \left( {1 + {x^2}} \right)} \right]_{ - 1}^b \cr & = \frac{1}{2}\mathop {\lim }\limits_{b \to + \infty } \left[ {\ln \left( {1 + {b^2}} \right) + \ln \left( {1 + {{\left( { - 1} \right)}^2}} \right)} \right] \cr & = \frac{1}{2}\mathop {\lim }\limits_{b \to + \infty } \left[ {\ln \left( {1 + {b^2}} \right) + \ln \left( 2 \right)} \right] \cr & \cr & {\text{calculate the limit when }}b \to + \infty \cr & = \frac{1}{2}\left[ {\ln \left( {1 + {{\left( { + \infty } \right)}^2}} \right) + \ln \left( 2 \right)} \right] \cr & = \frac{1}{2}\left[ {\ln \left( \infty \right) + \ln \left( 2 \right)} \right] \cr & = \infty \cr & {\text{In this case the integral diverges}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.