Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 12

Answer

$$\ln \sqrt 3 $$

Work Step by Step

$$\eqalign{ & \int_{ - \infty }^0 {\frac{{{e^x}}}{{3 - 2{e^x}}}} dx \cr & \cr & {\text{using the definition 7}}{\text{.8}}{\text{.1 of improper integrals}} \cr & \,\,\,\int_{ - \infty }^b {f\left( x \right)} dx = \mathop {\lim }\limits_{a \to - \infty } \int_a^b {f\left( x \right)} dx \cr & \cr & {\text{then}} \cr & \int_{ - \infty }^0 {\frac{{{e^x}}}{{3 - 2{e^x}}}} dx = \mathop {\lim }\limits_{a \to - \infty } \int_a^0 {\frac{{{e^x}}}{{3 - 2{e^x}}}dx} \cr & = - \frac{1}{2}\mathop {\lim }\limits_{a \to - \infty } \int_a^0 {\frac{{ - 2{e^x}}}{{3 - 2{e^x}}}dx} \cr & \cr & {\text{Integrate}} \cr & = - \frac{1}{2}\mathop {\lim }\limits_{a \to - \infty } \left[ {\ln \left| {3 - 2{e^x}} \right|} \right]_a^0 \cr & = - \frac{1}{2}\mathop {\lim }\limits_{a \to - \infty } \left[ {\ln \left| {3 - 2{e^{\left( 0 \right)}}} \right| - \ln \left| {3 - 2{e^a}} \right|} \right] \cr & = - \frac{1}{2}\mathop {\lim }\limits_{a \to - \infty } \left[ { - \ln \left| {3 - 2{e^a}} \right|} \right] \cr & = \frac{1}{2}\mathop {\lim }\limits_{a \to - \infty } \left[ {\ln \left| {3 - 2{e^a}} \right|} \right] \cr & \cr & {\text{calculate the limit when }}a \to - \infty \cr & = \frac{1}{2}\left[ {\ln \left| {3 - 2{e^{\left( { - \infty } \right)}}} \right|} \right] \cr & = \frac{1}{2}\left[ {\ln \left| {3 - 0} \right|} \right] \cr & = \frac{1}{2}\ln 3 \cr & = \ln \sqrt 3 \cr & {\text{then}}{\text{,}} \cr & {\text{The integral converges to }}\ln \sqrt 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.