Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 33

Answer

$${\text{True}}$$

Work Step by Step

$$\eqalign{ & \int_1^{ + \infty } {{x^{ - 4/3}}} dx \cr & {\text{Using the definition }}\int_a^{ + \infty } {f\left( x \right)dx} = \mathop {\lim }\limits_{b \to + \infty } \int_a^b {f\left( x \right)dx} \cr & \int_1^{ + \infty } {{x^{ - 4/3}}} dx = \mathop {\lim }\limits_{b \to + \infty } \int_1^b {{x^{ - 4/3}}dx} \cr & {\text{Integrating}} \cr & {\text{ }} = \mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{{{x^{ - 1/3}}}}{{ - 1/3}}} \right]_1^b \cr & {\text{ }} = - 3\mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{1}{{{x^{1/3}}}}} \right]_1^b \cr & {\text{ }} = - 3\mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{1}{{{b^{1/3}}}} - \frac{1}{{{1^{1/3}}}}} \right] \cr & {\text{Evaluate the limit}} \cr & {\text{ }} = - 3\left[ {\frac{1}{{{\infty ^{1/3}}}} - \frac{1}{{{1^{1/3}}}}} \right] \cr & {\text{ }} = - 3\left( {0 - 1} \right) \cr & {\text{ }} = 3 \cr & {\text{The statement it is true}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.