Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 23

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \int_{\pi /3}^{\pi /2} {\frac{{\sin x}}{{\sqrt {1 - 2\cos x} }}} dx \cr & {\text{The integrand is not defined for }}x = \frac{\pi }{3},{\text{ then}} \cr & \int_{\pi /3}^{\pi /2} {\frac{{\sin x}}{{\sqrt {1 - 2\cos x} }}} dx = \mathop {\lim }\limits_{b \to \pi /{3^ + }} \int_b^{\pi /2} {\frac{{\sin x}}{{\sqrt {1 - 2\cos x} }}} dx \cr & {\text{ }} = \frac{1}{2}\mathop {\lim }\limits_{b \to \pi /{3^ + }} \int_b^{\pi /2} {\frac{{2\sin x}}{{\sqrt {1 - 2\cos x} }}} dx \cr & {\text{Integrating}} \cr & {\text{ }} = \frac{1}{2}\mathop {\lim }\limits_{b \to \pi /{3^ + }} \left[ {2\sqrt {1 - 2\cos x} } \right]_b^{\pi /2} \cr & {\text{ }} = \mathop {\lim }\limits_{b \to \pi /{3^ + }} \left[ {\sqrt {1 - 2\cos x} } \right]_b^{\pi /2} \cr & {\text{ }} = \mathop {\lim }\limits_{b \to \pi /{3^ + }} \left[ {\sqrt {1 - 2\cos \left( {\frac{\pi }{2}} \right)} - \sqrt {1 - 2\cos \left( b \right)} } \right] \cr & {\text{Evaluate the limit}} \cr & {\text{ }} = \left[ {\sqrt 1 - \sqrt {1 - 2\cos \left( {\pi /3} \right)} } \right] \cr & {\text{ }} = \sqrt 1 - 0 \cr & {\text{ }} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.