Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 39

Answer

$$2$$

Work Step by Step

Let us consider that $I=\int_{0}^{\infty} \dfrac{e^{-x}}{\sqrt {1-e^{-x}}} dx$ Integrate the integral by using limits. $I=\lim\limits_{z \to 0^{+}}\int_{z}^{1} \dfrac{e^{-x}}{\sqrt {1-e^{-x}}} dx +\lim\limits_{z \to \infty}\int_{0}^{z} \dfrac{e^{-x}}{\sqrt {1-e^{-x}}} dx \\=\lim\limits_{z \to 0^{+}}[2 \sqrt {1-e^{-x}}]_z^1+\lim\limits_{z \to \infty}[2 \sqrt {1-e^{-x}}]_0^z\\= \lim\limits_{z \to 0^{+}}[2 \sqrt {1-e^{-1}}-2 \sqrt {1-e^{-a}}]+\lim\limits_{z \to \infty}[2 \sqrt {1-e^{-b}}-2 \sqrt {1-e^{-1}}]\\=2-0\\=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.