Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 10

Answer

$$\frac{\pi }{4}$$

Work Step by Step

$$\eqalign{ & \int_{ - \infty }^3 {\frac{{dx}}{{{x^2} + 9}}} \cr & \cr & {\text{using the definition 7}}{\text{.8}}{\text{.1 of improper integrals}} \cr & \,\,\,\int_{ - \infty }^b {f\left( x \right)} dx = \mathop {\lim }\limits_{a \to - \infty } \int_a^b {f\left( x \right)} dx \cr & \cr & {\text{then}} \cr & \,\int_{ - \infty }^3 {\frac{{dx}}{{{x^2} + 9}}} = \mathop {\lim }\limits_{a \to - \infty } \int_a^3 {\frac{{dx}}{{{x^2} + 9}}} \cr & = \mathop {\lim }\limits_{a \to - \infty } \int_a^3 {\frac{{dx}}{{{x^2} + {{\left( 3 \right)}^2}}}} \cr & \cr & {\text{Integrate by tables using the formula }}\int {\frac{1}{{{x^2} + {a^2}}}} dx = \frac{1}{a}{\tan ^{ - 1}}\left( {\frac{x}{a}} \right) + C \cr & = \mathop {\lim }\limits_{a \to - \infty } \left[ {\frac{1}{3}{{\tan }^{ - 1}}\left( {\frac{x}{3}} \right)} \right]_a^3 \cr & = \frac{1}{3}\mathop {\lim }\limits_{a \to - \infty } \left[ {{{\tan }^{ - 1}}\left( {\frac{3}{3}} \right) - {{\tan }^{ - 1}}\left( {\frac{a}{3}} \right)} \right] \cr & = \frac{1}{3}\mathop {\lim }\limits_{a \to - \infty } \left[ {\frac{\pi }{4} - {{\tan }^{ - 1}}\left( {\frac{a}{3}} \right)} \right] \cr & \cr & {\text{calculate the limit when }}a \to - \infty \cr & = \frac{1}{3}\left[ {\frac{\pi }{4} - {{\tan }^{ - 1}}\left( {\frac{{ - \infty }}{3}} \right)} \right] \cr & = \frac{1}{3}\left[ {\frac{\pi }{4} - \left( { - \frac{\pi }{2}} \right)} \right] \cr & = \frac{1}{3}\left( {\frac{{3\pi }}{4}} \right) \cr & = \frac{\pi }{4} \cr & {\text{then}}{\text{,}} \cr & {\text{The integral converges to }}\frac{\pi }{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.