Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 37

Answer

$$2$$

Work Step by Step

Let us consider that $I=\int_{0}^{\infty} \dfrac{e^{-\sqrt x}}{\sqrt x} dx$ Plug $a=\sqrt x \implies dx=2a \ da$ Integrate the integral by using limits. $I=\lim\limits_{z \to 0^{+}}\int_{z}^1 \dfrac{e^{-\sqrt x}}{\sqrt x}\ dx+\lim\limits_{z \to \infty}\int_{1}^z \dfrac{e^{-\sqrt x}}{\sqrt x} dx \\=\lim\limits_{z \to 0^{+}}[-2e^{-\sqrt x}]_z^1+\lim\limits_{z \to \infty}[-2 e^{-\sqrt x}]_1^z\\=-2 e^{-1}+2+0+2e^{-1}\\=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.