Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 30

Answer

$\dfrac{\pi}{2}$

Work Step by Step

We are given the integral $\int_1^{\infty} \dfrac{dx}{x\sqrt {x^2-1}}$ Let us substitute $a=\sqrt {x^2-1}$ and $da=\dfrac{x dx}{\sqrt {x^2-1}}$ Now, consider $I = \int \dfrac{da}{a^2+1}= tan^{-1} (a) +C\\= \tan^{-1} \sqrt {x^2-1}+C$ Since, $ \lim\limits_{x \to 1} \tan^{-1} \sqrt {x^2-1} =0$ and $ \lim\limits_{x \to \infty} \tan^{-1} \sqrt {x^2-1} =\dfrac{\pi}{2}$ So, our given integral becomes: $I=\int_1^{\infty} \dfrac{dx}{x\sqrt {x^2-1}}=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.