Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 5

Answer

$$\ln 2$$

Work Step by Step

$$\eqalign{ & \int_3^{ + \infty } {\frac{2}{{{x^2} - 1}}} dx \cr & {\text{using the definition 7}}{\text{.8}}{\text{.1 of improper integrals}} \cr & \,\,\,\int_a^{ + \infty } {f\left( x \right)} dx = \mathop {\lim }\limits_{b \to + \infty } \int_a^b {f\left( x \right)} dx \cr & \cr & {\text{then}} \cr & \,\,\,\int_3^{ + \infty } {\frac{2}{{{x^2} - 1}}} dx = \mathop {\lim }\limits_{b \to + \infty } \int_3^b {\frac{2}{{{x^2} - 1}}} dx \cr & = 2\mathop {\lim }\limits_{b \to + \infty } \int_3^b {\frac{1}{{{x^2} - 1}}} dx \cr & \cr & {\text{integrate by tables using the formula }}\int {\frac{1}{{{x^2} - {a^2}}}dx = \frac{1}{{2a}}\ln \left| {\frac{{x - a}}{{x + a}}} \right|} + C \cr & 2\mathop {\lim }\limits_{b \to + \infty } \int_3^b {\frac{1}{{{x^2} - 1}}} dx = 2\mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{1}{{2\left( 1 \right)}}\ln \left| {\frac{{x - 1}}{{x + 1}}} \right|} \right]_3^b \cr & = \mathop {\lim }\limits_{b \to + \infty } \left[ {\ln \left| {\frac{{x - 1}}{{x + 1}}} \right|} \right]_3^b \cr & = \mathop {\lim }\limits_{b \to + \infty } \left[ {\ln \left| {\frac{{b - 1}}{{b + 1}}} \right| - \ln \left| {\frac{{3 - 1}}{{3 + 1}}} \right|} \right] \cr & \cr & {\text{simplify}} \cr & = \mathop {\lim }\limits_{b \to + \infty } \left[ {\ln \left| {\frac{{\frac{b}{b} - \frac{1}{b}}}{{\frac{b}{b} + \frac{1}{b}}}} \right| - \ln \left| {\frac{1}{2}} \right|} \right] \cr & = \mathop {\lim }\limits_{b \to + \infty } \left[ {\ln \left| {\frac{{1 - \frac{1}{b}}}{{1 + \frac{1}{b}}}} \right| - \ln \left| {\frac{1}{2}} \right|} \right] \cr & \cr & {\text{calculate the limit when }}b \to + \infty \cr & = \ln \left| {\frac{{1 - \frac{1}{\infty }}}{{1 + \frac{1}{\infty }}}} \right| - \ln \left( {\frac{1}{2}} \right) \cr & = \ln \left| 1 \right| - \ln \left( {\frac{1}{2}} \right) \cr & = - \ln \left( {\frac{1}{2}} \right) \cr & = \ln 2 \cr & {\text{then}}{\text{,}} \cr & {\text{The integral converges to ln2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.