Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 26

Answer

$+\infty$ The given integral is divergent.

Work Step by Step

Simplify the improper integral $\int_{-2}^{2} \dfrac{\ dx}{x^2}$ Let us consider that $I=\lim\limits_{z \to 0^{-}} \int_{-2}^{z} \dfrac{dx}{x^2}+\lim\limits_{z \to 0^{+}} \int_{z}^{2} \dfrac{dx}{x^2}$ Integrate the integral by using limits. $I=\lim\limits_{z \to 0^{-}} [\dfrac{-1}{x}]_{-2}^a+\lim\limits_{z \to 0^{+}} [\dfrac{-1}{x}]_{z}^2 \\=(\infty-\dfrac{1}{2})+(-\dfrac{1}{2}+\infty)\\=+\infty$ So, the given integral is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.