Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 8

Answer

$$\infty \,\,\,\left( {{\text{diverges}}} \right)$$

Work Step by Step

$$\eqalign{ & \int_2^{ + \infty } {\frac{1}{{x\sqrt {\ln x} }}} dx \cr & \cr & {\text{using the definition 7}}{\text{.8}}{\text{.1 of improper integrals}} \cr & \,\,\,\int_a^{ + \infty } {f\left( x \right)} dx = \mathop {\lim }\limits_{b \to + \infty } \int_a^b {f\left( x \right)} dx \cr & \cr & {\text{then}} \cr & \,\,\,\int_2^{ + \infty } {\frac{1}{{x\sqrt {\ln x} }}} dx = \mathop {\lim }\limits_{b \to + \infty } \int_2^b {\frac{1}{{x\sqrt {\ln x} }}} dx \cr & = \mathop {\lim }\limits_{b \to + \infty } \int_2^b {\left( {\frac{1}{{\sqrt {\ln x} }}} \right)\left( {\frac{1}{x}} \right)} dx \cr & = \mathop {\lim }\limits_{b \to + \infty } \int_2^b {{{\left( {\ln x} \right)}^{ - 1/2}}\left( {\frac{1}{x}} \right)} dx \cr & \cr & {\text{integrate by tables using the formula }}\int {{u^n}du = \frac{{{u^{n + 1}}}}{{n + 1}}} + C \cr & = \mathop {\lim }\limits_{b \to + \infty } \left[ {\frac{{{{\left( {\ln x} \right)}^{1/2}}}}{{1/2}}} \right]_2^b \cr & = 2\mathop {\lim }\limits_{b \to + \infty } \left[ {\sqrt {\ln x} } \right]_2^b \cr & = 2\mathop {\lim }\limits_{b \to + \infty } \left[ {\sqrt {\ln b} - \sqrt {\ln 2} } \right] \cr & \cr & {\text{calculate the limit when }}b \to + \infty \cr & = 2\left[ {\sqrt {\ln \infty } - \sqrt {\ln 2} } \right] \cr & = 2\left( {\infty - \sqrt {\ln 2} } \right) \cr & = \infty \,\,\,\left( {{\text{diverges}}} \right) \cr & {\text{then}}{\text{,}} \cr & {\text{In this case the integral diverges}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.