Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 32

Answer

$$\pi$$

Work Step by Step

Simplify the improper integral $\int_{0}^{\infty} \dfrac{1}{\sqrt x (x+1)} dx$ Let us consider that $I=\int_{0}^{\infty} \dfrac{1}{\sqrt x (x+1)} dx$ Plug $a=\sqrt x \implies dx=2 a \ da$ Integrate the integral by using limits. $I=2 \int_0^{\infty} \dfrac{2}{a^{2}+1} da \\=2 \arctan(a)|_0^{\infty} \\=2 \arctan(\sqrt x)|_0^{\infty} \\= 2( \dfrac{\pi}{2}-0)\\=\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.