Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 11

Answer

$$\frac{1}{3}$$

Work Step by Step

$$\eqalign{ & \int_{ - \infty }^0 {{e^{3x}}} dx \cr & \cr & {\text{using the definition 7}}{\text{.8}}{\text{.1 of improper integrals}} \cr & \,\,\,\int_{ - \infty }^b {f\left( x \right)} dx = \mathop {\lim }\limits_{a \to - \infty } \int_a^b {f\left( x \right)} dx \cr & \cr & {\text{then}} \cr & \int_{ - \infty }^0 {{e^{3x}}} dx = \mathop {\lim }\limits_{a \to - \infty } \int_a^0 {{e^{3x}}dx} \cr & = \mathop {\lim }\limits_{a \to - \infty } \int_a^0 {{e^{3x}}dx} \cr & = \frac{1}{3}\mathop {\lim }\limits_{a \to - \infty } \int_a^0 {{e^{3x}}\left( 3 \right)dx} \cr & \cr & {\text{Integrate}} \cr & = \frac{1}{3}\mathop {\lim }\limits_{a \to - \infty } \left[ {{e^{3x}}} \right]_a^0 \cr & = \frac{1}{3}\mathop {\lim }\limits_{a \to - \infty } \left[ {{e^{3\left( 0 \right)}} - {e^{3a}}} \right] \cr & = \frac{1}{3}\mathop {\lim }\limits_{a \to - \infty } \left( {1 - {e^{3a}}} \right) \cr & \cr & {\text{calculate the limit when }}a \to - \infty \cr & = \frac{1}{3}\left( {1 - {e^{3\left( { - \infty } \right)}}} \right) \cr & = \frac{1}{3}\left( {1 - 0} \right) \cr & = \frac{1}{3} \cr & {\text{then}}{\text{,}} \cr & {\text{The integral converges to }}\frac{1}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.