Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 13

Answer

$${\text{diverges}}$$

Work Step by Step

$$\eqalign{ & \int_{ - \infty }^\infty x dx \cr & {\text{Use the definition }}\int_{ - \infty }^\infty {f\left( x \right)} dx = \int_{ - \infty }^c {f\left( x \right)} dx + \int_c^{ + \infty } {f\left( x \right)} dx \cr & {\text{Let }}c = 0. \cr & \int_{ - \infty }^\infty x dx = \int_{ - \infty }^0 x dx + \int_0^{ + \infty } x dx \cr & {\text{Evaluating the integrals on the right side separately}} \cr & \int_{ - \infty }^0 x dx = \mathop {\lim }\limits_{a \to - \infty } \int_a^0 x dx \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{a \to - \infty } \left[ {\frac{{{x^2}}}{2}} \right]_a^0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{a \to - \infty } \left[ {\frac{{{{\left( 0 \right)}^2}}}{2} - \frac{{{{\left( a \right)}^2}}}{2}} \right] \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{a \to - \infty } \left( {\frac{{{a^2}}}{2}} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{Find the limit when }}a \to - \infty \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{{\left( { - \infty } \right)}^2}}}{2} = + \infty \cr & {\text{The integral diverges, }}{\text{so the given integral }}\int_{ - \infty }^\infty x dx{\text{ diverges}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.