Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.8 Improper Integrals - Exercises Set 7.8 - Page 554: 38

Answer

$\dfrac{\pi}{6}$

Work Step by Step

Let us consider that $I=\int_{12}^{\infty} \dfrac{1}{\sqrt x(x+4)} dx$ Plug $a=\sqrt x \implies dx=2a \ da$ Integrate the integral by using limits. $I=\lim\limits_{z \to \infty}\int_{12}^{z} \dfrac{1}{\sqrt x(x+4)} dx\\=\lim\limits_{z \to \infty}[\arctan (\dfrac{\sqrt x}{2})]_{12}^z\\=\lim\limits_{z \to \infty}[\arctan (\dfrac{\sqrt z}{2})-\lim\limits_{z \to \infty}[\arctan (\dfrac{\sqrt {12}}{2})]\\=\dfrac{\pi}{2}-\dfrac{\pi}{3}\\=\dfrac{\pi}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.