Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 6

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {4, - 2} \right)} x\root 3 \of {{y^3} + 2x} \cr & {\text{Using the limit laws }} \cr & = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {4, - 2} \right)} x\root 3 \of {\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {4, - 2} \right)} \left( {{y^3} + 2x} \right)} \cr & = \left( {\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {4, - 2} \right)} x} \right)\left( {\root 3 \of {\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {4, - 2} \right)} {y^3} + \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {4, - 2} \right)} 2x} } \right) \cr & {\text{then}}{\text{, substituting }}4{\text{ for }}x{\text{ and }} - 2{\text{ for }}y \cr & = \left( 4 \right)\left( {\root 3 \of {{{\left( { - 2} \right)}^3} + 2\left( 4 \right)} } \right) \cr & = \left( 4 \right)\left( {\root 3 \of { - 8 + 8} } \right) \cr & = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.