Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 2

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{4x - y}}{{\sin y - 1}} \cr & {\text{Using the limit laws }} \cr & = \frac{{\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \left( {4x - y} \right)}}{{\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \left( {\sin y - 1} \right)}} \cr & {\text{then}}{\text{,}} \cr & = \frac{{4\left( 0 \right) - \left( 0 \right)}}{{\sin \left( 0 \right) - 1}} \cr & {\text{simplifying}} \cr & = \frac{0}{{ - 1}} \cr & = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.