Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 20

Answer

The limit does not exist

Work Step by Step

$\lim\limits_{(x, y, z) \to (0, 0, 0)}\frac{\sin(\sqrt {x^2+y^2+z^2})}{x^2+y^2+z^2}$ Let $t = \sqrt {x^2+y^2+z^2}$ $\lim\limits_{(t) \to 0^+} = \frac{\sin t}{t^2} = \lim\limits_{(t) \to 0^+} \frac{\cos t}{2t} = +\infty$ [NB: We apply L'hopitals rule here in finding the limit] $\lim\limits_{(t) \to 0^-} = \frac{\sin t}{t^2} = \lim\limits_{(t) \to 0^-} \frac{\cos t}{2t} = -\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.