Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 3

Answer

$$ - 8$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( { - 1,2} \right)} \frac{{x{y^3}}}{{x + y}} \cr & {\text{Using the limit laws }} \cr & = \frac{{\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( { - 1,2} \right)} x{y^3}}}{{\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( { - 1,2} \right)} \left( {x + y} \right)}} \cr & {\text{then}}{\text{, substituting }} - 1{\text{ for }}x{\text{ and 2 for }}y \cr & = \frac{{\left( { - 1} \right){{\left( 2 \right)}^3}}}{{ - 1 + 2}} \cr & {\text{simplifying}} \cr & = \frac{{ - 8}}{1} \cr & = - 8 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.