Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 23

Answer

0

Work Step by Step

\[ \lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}} \ln \left(x^{2}+y^{2}\right) \] Convert to polar coordinates \[ x^{2}+y^{2}=r^{2} \text { and } \theta=\tan ^{-1}\left(\frac{y}{x}\right) \] $x^{2}+y^{2}=r^{2} \Rightarrow r=\sqrt{x^{2}+y^{2}}$ If $r=\sqrt{x^{2}+y^{2}}$ and $(x, y) \rightarrow(0,0)$ then $r \rightarrow 0$ Therefore, $\underbrace{\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}} \ln \left(x^{2}+y^{2}\right)}_{\downarrow}$ \[ \lim _{r \rightarrow 0} r \ln \left(r^{2}\right) \] The limit can be written as \[ \begin{array}{l} \lim _{r \rightarrow 0} \frac{\ln r^{2}}{\frac{1}{r}} \\ \lim _{r \rightarrow 0} \frac{2 \ln r}{\frac{1}{r}} \end{array} \] Now apply the L'Hopital's rule $\lim _{r \rightarrow 0} \frac{\ln r^{2}}{\frac{1}{r}}=\lim _{r \rightarrow 0} \frac{2 \frac{d}{d t}[\ln r]}{\frac{d}{d r}\left[\frac{1}{r}\right]}$ $\lim _{r \rightarrow 0} r \ln \left(r^{2}\right)=\lim _{r \rightarrow 0} \frac{2\left(\frac{1}{r}\right)}{-\frac{1}{r^{2}}}$ $\lim _{r \rightarrow 0} r \ln \left(r^{2}\right)=-\lim _{r \rightarrow 0} \frac{2 r^{2}}{r}=-\lim _{r \rightarrow 0} 2 r$ Evaluate the limit $-\lim _{r \rightarrow 0} 2 r=-2(0)$ $-\lim _{r \rightarrow 0} 2 r=0$ Therefore $\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}} \ln \left(x^{2}+y^{2}\right)=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.