Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 25

Answer

0

Work Step by Step

We find: \begin{array}{c} x=r \cos \theta, \quad y=r \sin \theta \\ r^{2}=x^{2}+y^{2} \\ (x, y) \rightarrow(0,0) \quad \Rightarrow r \rightarrow 0+ \\ \frac{x^{2} y^{2}}{\sqrt{x^{2}+y^{2}}}=\frac{\left(r^{2} \cos ^{2} \theta\right)\left(r^{2} \sin ^{2} \theta\right)}{r}=r^{3} \cos ^{2} \theta \sin ^{2} \theta \\ \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{\sqrt{x^{2}+y^{2}}}=\lim _{r \rightarrow 0+} r^{3}\left(\cos ^{2} \theta \sin ^{2} \theta\right)=0 \end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.