Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 1

Answer

$$35$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,3} \right)} \left( {4x{y^2} - x} \right) \cr & {\text{Using the limit laws }} \cr & = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,3} \right)} \left( {4x{y^2}} \right) - \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {1,3} \right)} \left( x \right) \cr & {\text{then}}{\text{,}} \cr & = 4{\left( 1 \right)^2}{\left( 3 \right)^2} - \left( 1 \right) \cr & {\text{simplifying}} \cr & = 4\left( 1 \right)\left( 9 \right) - 1 \cr & = 35 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.