Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 15

Answer

We can see that the limit does not exist.

Work Step by Step

Select different paths (on a hunch that there is no limit). Along $y=0: \quad \lim _{x \rightarrow 0} \frac{0}{3 x^{2}}=\lim _{x \rightarrow 0} 0=0$ Along $y=x: \quad \lim _{x \rightarrow 0} \frac{x^{2}}{5 x^{2}}=\lim _{x \rightarrow 0} \frac{1}{5}=\frac{1}{5}$ We can see that the limit does not exist. After all, for the limit to exist, the limit must be the same regardless of the path chosen.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.