Answer
Limit does not exist
Work Step by Step
We have to find the limit
\[
=\lim _{(x, y) \rightarrow(0,0)} \frac{1-x^{2}-y^{2}}{x^{2}+y^{2}}
\]
Let $z=x^{2}+y^{2}$. So if, $(x, y) \rightarrow(0,0) \Rightarrow z \rightarrow 0^{+}$
\[
\begin{array}{l}
=\lim _{z \rightarrow 0^{+}} \frac{(1-z)}{z} \\
=\frac{1}{0^{+}} \\
=\infty \\
=\text { Not defined }
\end{array}
\]