Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 21

Answer

The limit does not exist

Work Step by Step

Substitute: $\quad t=\sqrt{x^{2}+z^{2} +y^{2}}$ Thus: $\frac{e^{\sqrt{x^{2}+y^{2}+z^{2}}}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{e^{t}}{t}$ $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{e^{\sqrt{x^{2}+y^{2}+z^{2}}}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\lim _{t \rightarrow 0+} \frac{e^{t}}{t} \quad =\frac{1}{0} =\text{does not exist}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.