Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 22

Answer

$$\frac{\pi }{2}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y,z} \right) \to \left( {0,0,0} \right)} {\tan ^{ - 1}}\left[ {\frac{1}{{{x^2} + {y^2} + {z^2}}}} \right] \cr & {\text{Using the limit laws }} \cr & = {\tan ^{ - 1}}\left[ {\frac{1}{{\mathop {\lim }\limits_{\left( {x,y,z} \right) \to \left( {0,0,0} \right)} {x^2} + \mathop {\lim }\limits_{\left( {x,y,z} \right) \to \left( {0,0,0} \right)} {y^2} + \mathop {\lim }\limits_{\left( {x,y,z} \right) \to \left( {0,0,0} \right)} {z^2}}}} \right] \cr & {\text{Evaluating the limit}}{\text{, substitute 0 for }}x,\,\,y{\text{ and }}z \cr & = {\tan ^{ - 1}}\left[ {\frac{1}{{{{\left( 0 \right)}^2} + {{\left( 0 \right)}^2} + {{\left( 0 \right)}^2}}}} \right] \cr & {\text{simplifying}} \cr & = {\tan ^{ - 1}}\left[ {\frac{1}{0}} \right] \cr & = {\tan ^{ - 1}}\left( { + \infty } \right) \cr & = \frac{\pi }{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.