Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 5

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \ln \left( {1 + {x^2}{y^3}} \right) \cr & {\text{Using the limit laws }} \cr & = \ln \left( {\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \left[ {1 + {x^2}{y^3}} \right]} \right) \cr & = \ln \left( {\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} 1 + \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} {x^2}{y^3}} \right) \cr & {\text{then}}{\text{, substituting }}0{\text{ for }}x{\text{ and }}0{\text{ for }}y \cr & = \ln \left( {1 + {{\left( 0 \right)}^2}{{\left( 0 \right)}^3}} \right) \cr & {\text{simplifying}} \cr & = \ln \left( 1 \right) \cr & = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.