Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 18

Answer

$$\ln 5$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y,z} \right) \to \left( {2,0, - 1} \right)} \ln \left( {2x + y - z} \right) \cr & {\text{Using the limit laws }} \cr & = \ln \left( {\mathop {\lim }\limits_{\left( {x,y,z} \right) \to \left( {2,0, - 1} \right)} \left( {2x} \right) + \mathop {\lim }\limits_{\left( {x,y,z} \right) \to \left( {2,0, - 1} \right)} \left( y \right) - \mathop {\lim }\limits_{\left( {x,y,z} \right) \to \left( {2,0, - 1} \right)} \left( z \right)} \right) \cr & {\text{Evaluating the limit}}{\text{, substitute 2 for }}x,\,\,0{\text{ for y and }} - 1{\text{ for }}z \cr & = \ln \left( {2\left( 2 \right) + 0 - \left( { - 1} \right)} \right) \cr & {\text{simplifying}} \cr & = \ln \left( {4 + 1} \right) \cr & = \ln 5 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.