Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 11

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} {e^{ - 1/\left( {{x^2} + {y^2}} \right)}} \cr & {\text{Using the limit laws }} \cr & = {e^{\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \left[ { - 1/\left( {{x^2} + {y^2}} \right)} \right]}} \cr & {\text{then}}{\text{, substituting 0 for }}x{\text{ and }}y \cr & = {e^{ - 1/\left( {{{\left( 0 \right)}^2} + {{\left( 0 \right)}^2}} \right)}} \cr & {\text{simplifying}} \cr & = {e^{ - 1/0}} \cr & = {e^{ - \infty }} \cr & = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.