Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.2 Limits And Continuity - Exercises Set 13.2 - Page 925: 14

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^4} - 16{y^4}}}{{{x^2} + 4{y^2}}} \cr & {\text{Evaluating the limit by direct substitution, we obtain }}\frac{0}{0} \cr & {\text{Factoring the difference of two squares for the numerator}} \cr & = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{\left( {{x^2} - 4{y^2}} \right)\left( {{x^2} + 4{y^2}} \right)}}{{{x^2} + 4{y^2}}} \cr & {\text{cancel the common factor}} \cr & = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \left( {{x^2} - 4{y^2}} \right) \cr & {\text{then}}{\text{, substituting 0 for }}x{\text{ and }}y \cr & = {\left( 0 \right)^2} - 4{\left( 0 \right)^2} \cr & = 0 \cr & \cr & {\text{Then}}{\text{,}} \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^4} - 16{y^4}}}{{{x^2} + 4{y^2}}} = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.